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Abstract
Geodiversity assessment gained a prominent interest in the geoscientific community and beyond. However, it is not always 
sufficient for land planning or geoconservation. It is then pivotal to account for the contribution of functional geodiversity 
(i.e., geofunctionality), for instance declining the ecosystem services (ES) cascade model. However, by our knowledge, 
geodiversity-based ES (GES) have been rarely quantified. This paper aims to adapt existing ES-related approaches to quantify 
and map GES in French Guiana, a French Overseas territory located in the Amazon, where ongoing land use changes might 
affect ES supply. Seven GES were spatially assessed through an indicator-based approach accounting for both offered and 
used GES and merged into multiservice maps. Multiservice maps were then combined with a hemeroby index to highlight 
geofunctionality hotspots. Difference maps were finally used to compare geodiversity and geofunctionality patterns. The 
ES framework seems an effective way to quantitatively assess geofunctionality. Geodiversity and geofunctionality do not 
follow the same spatial patterns: very geodiverse areas can be poorly functional and vice-versa. Therefore, geodiversity and 
geofunctionality need to be both considered when it comes to landscape planning. This might be enhanced through hotspot 
mapping to highlight priority areas for planners. This study also focuses on the role of human inputs in GES supply and 
raises questions about the selection of proper indicators that should fit each step from the ES supply to management. High-
quality datasets must be available and their occasional absence is a central matter of land planning that must be addressed 
before every decision-making process.
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Introduction

Despite their pivotal role in socio-ecological function-
ing, abiotic and interfacial (i.e., soils) components of nat-
ural diversity still tend not to find their due place within 
land planning, environmental management, and con-
servation strategies (Brilha et  al. 2018; Boothroyd and 
McHenry 2019), which often focus mostly on biodiversity 
(Chakraborty and Gray 2020).

Such considerations converged within the development 
of geoecological approaches (Tandarić 2015) and of the 
concept of “geodiversity,” as a new prism to look at all non-
living components of nature and as a new geological and 
geographical paradigm (Claudino-Sales 2021). Geodiversity, 
the abiotic equivalent of biodiversity (Gray 2011), is gener-
ally defined as “the natural range (diversity) of geological 
(rocks, minerals, fossils), geomorphological (landforms, 
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topography, physical processes), soil and hydrological fea-
tures,” including “their assemblages, structures, systems and 
contributions to landscapes” (Gray 2013).

Despite its scope encompassing a wider range of activities 
included in land-planning (Serrano and Ruiz-Flaño 2007; 
Schrodt et al. 2019), geodiversity has been mainly related 
to geoconservation. The possibility, conditions, and useful-
ness of a broader operationalization of this concept need 
to be tested and demonstrated. Moreover, the assessment 
of geodiversity in terms of site-specific richness and abun-
dance (Zwoliński et al. 2018) appears insufficient to support 
both land planning and geoconservation (Scammacca et al. 
2022a). It is therefore critical to apprehend the ensemble of 
contributions that geodiversity provides to socio-ecological 
functioning (i.e., geofunctionality) (Volchko et al. 2020; 
Scammacca et al. 2023a).

Over the last years, the scientific community suggested 
that declining the “ecosystem services” (ES) concept to geo-
diversity might be an effective way to assess such contribu-
tions (Kløve et al. 2011; Gray et al. 2013; Van der Meulen 
et al. 2016; Reverte et al. 2020; Volchko et al. 2020; Carrión-
Mero et al. 2022), and the role of geodiversity in the deliv-
ery of many ES has been widely recognized (Gray 2011; 
Van Ree et al. 2017; Fox et al. 2020; Crisp et al. 2021). ES 
can be defined as the contributions that ecosystems provide 
to human well-being (Müller and Burkhard 2012; Haines-
Young and Potschin-Young 2018), sometimes through 
human inputs (Jones et al. 2016; La Notte et al. 2017) and 
which do not exist in isolation from people’s needs, demand, 
access, and priorities (Haines-Young and Potschin 2010; 
Heink et al. 2016).

The ES approach, particularly because of its suitability 
for assessment and mapping exercises (Martínez-Harms 
and Balvanera 2012; Burkhard and Maes 2017), is widely 
recognized as a potential tool to improve environmental 
monitoring and land planning through holistic thinking 
about ecosystem processes and human well-being (Wei and 
Zhan 2023). This might be particularly useful in remark-
able areas of natural richness and diversity such as the Ama-
zon basin, where rapid ongoing land use changes affect ES 
supply (Richards and VanWey 2015; Jakovac et al. 2016; 
Ferreira et al. 2021). Located in this region, the only con-
tinental French and European Overseas territory of French 
Guiana has almost 96% of its surface covered by the Amazon 
rainforest. Although it is one of the least densely populated 
areas in the world, the population growth rate and the related 
needs in terms of infrastructures, agricultural supplies, and 
economic growth are exacerbating and potentially affecting 
ES supply. Land use impacts on ES supply can be analyzed 
through hotspot mapping, which also supports land planners 
in geographic prioritization (Orsi et al. 2020). Analogously, 
hotspots can be used to identify highly geodiverse and highly 
threatened areas (Bétard and Peulvast 2019).

Despite that it might play a greater role than biotic com-
ponents in the delivery of some services (Heink et al. 2016; 
Slabbert et al. 2022), geodiversity has been often neglected 
in practice in the developments of the ES concept. Although 
soil-related ES gained a growing interest over the last dec-
ades (Baveye et al. 2016; Fossey et al. 2020; Scammacca 
et al. 2023b), geodiversity-based ES (GES) are still con-
sidered an “abiotic extension” (Gray 2018) in current ES 
classification systems (Van der Meulen et al. 2016), creating 
a dichotomy between the role of biotic and abiotic contribu-
tions in ES supply (Fox et al. 2020).

By our knowledge, quantitative assessments of GES 
remain uncommon (Butorac and Buzjak 2020; Miklós et al. 
2020; Reverte et al. 2020) and current studies provide often 
qualitative assessments of GES and of their relationships 
with biodiversity and geodiversity (Alahuhta et al. 2018). 
Recently, Balaguer et al. (2023) applied a matrix-based 
approach to assess how land use changes might affect eco-
system services provided by geodiversity in Brazil. Nerver-
theless, the scarcity of quantitative studies might limit the 
full implementation of the geodiversity concept within the 
ES framework towards the accomplishment of sustainable 
development goals (Van Ree and van Beukering 2016; 
Brilha et al. 2018; Bitoun et al. 2023). French Guiana geo-
diversity, despite being historically associated with gold 
mining, played an important role in the past dynamics of 
the region, and it has a wider potential to contribute to the 
supply of multiple ES (Scammacca et al. 2022a). Because 
of its socio-geo-ecological features, this territory represents 
a major challenge for sustainable land planning and con-
servation (Aubertin and Pons 2017; Budoc 2017). Previous 
studies focused on the assessment of ES in the region (Sieber 
et al. 2021) mainly based on land-use proxies or specific 
biotic parameters (Trégarot et al. 2021).

This study has therefore the purpose to (i) attempt at a 
first quantification of geofunctionality in French Guiana, in 
terms of GES supply; (ii) analyze the spatial patterns of geo-
diversity and geofunctionality; and (iii) explore approaches 
to account for geodiversity and geofunctionality within sus-
tainable land planning strategies in French Guiana discuss-
ing the challenges of data unavailability and the pertinence 
of potential ES management indicators.

Applying the Ecosystem Service Cascade 
Model to Geodiversity

The ES paradigm has been conceptualized through the “cas-
cade model” which distinguishes between ES components 
(e.g., ecosystem processes, functions, services, benefits) and 
links the two ends of the ES supply chain (Haines-Young and 
Potschin 2010). This model has been often revisited, par-
ticularly to fit land planning requirements (Villamagna et al. 
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2013; Von Haaren et al. 2014; La Notte et al. 2017; Zhang 
et al. 2022). Von Haaren et al. (2014) re-adapted the cascade 
model proposing a practice-oriented ES evaluation model 
identifying: “offered” ES (or ES capacity), as the totality of 
ecosystem contributions that could, at least potentially, be 
utilized by humans, and “used” ES (or ES flow), which are 
those currently utilized by humans (Von Haaren et al. 2014).

This distinction might also offer complementary per-
spectives elucidating the aspect of human inputs within 
planning objectives (Albert et al. 2016). Since landscapes 
are often modified by societies, human-derived capital—
in terms instance of knowledge, human interventions, and 
environmental management (Fig. 1)—is often necessary for 
the delivery of many ES (Jones et al. 2016). However, this 
dimension is rarely considered in ES assessments, and it is 
currently unclear to what extent human influence is included 
in the ES concept (Heink et al. 2016).

In order to quantify GES, this study follows the Von 
Haaren et al. (2014) model. The link between functions 
and services is reflected by the offered or used ES supply, 
depending on the intensity of the human input involved 
(Fig. 1). On one hand, the assessment of offered ES implies 
the acknowledgement (i.e., inventory, prospection, knowl-
edge) of the capacity to deliver the service according to user 
needs. On the other, the assessment of used ES might imply 
human inputs involving planning and management practices 
(e.g., infrastructures construction, exploitation, transforma-
tion, conservation) that allow for the offered service to be 
concretely accessible and enjoyed by users according to their 
demands (Fig. 1).

Study Area

The current approach is tested in French Guiana, a French 
region located in South America (Fig. 2). Its geology, locally 
documented (Choubert 1949; Magnien et al. 1990) and 
described by the scientific literature (Choubert 1974; Milesi 
et al. 2003; Théveniaut et al. 2012), can be framed within 
the formation of the Precambrian terrains of the Guiana 
Shield (Delor et al. 2003). French Guiana can be divided 
into two main geomorphological domains: (i) the coastal 

plains of the lowlands (4% of the territory), underlined by 
ancient and recent Quaternary sediments (Fig. 2a); (ii) the 
uplands of the inner regions (96% of the territory), with 
moderate relief energy (e.g., hills of granitic inselbergs and 
volcano-sedimentary peaks reaching a maximum of 850 m 
a.s.l.), and composed of outcrops of the oldest crystalline 
Paleoproterozoic basement formed during the crustal growth 
of the Transamazonian orogeny (2.25–1.9 Ga) (e.g., meta-
morphic, magmatic, sedimentary, and volcanic rocks). Of 
particular interest, two greenstone belts, mainly composed 
of meta-volcanic lithology with greenschist to amphibolite 
facies metamorphism and of poorly known meta-volcano-
sedimentary rocks (Fig 2a), host most of gold primary and 
placer deposits, targeted by legal and illegal mining (Scam-
macca et al. 2022b). Water resources are distributed among 
groundwater bodies (84,000  km2 in confined aquifers) and 
a dense and tufted network of surface waters (20,000 km of 
length) spread across the territory (Guyane 2013). Soils are 
well documented, although data are scattered and often non-
harmonized. They are greatly heterogeneous as a function 
of petro-geochemistry diversity of parent materials, geomor-
phological structures, tectonics, weathering through time, 
and hydrological dynamics (Boulet et al. 1979; Palvadeau 
1998; Ferry et al. 2003). Lowland soils, developed on coastal 
plains, include moderately developed soils, Histosols, Gley-
sols, Podzols, while highland soils include Ferralsols, ferric 
Cambisols, Acrisols, Plinthosols, and Podzols (Leprun et al. 
2001).

Human settlements and activities are mostly located 
along the coastal areas and along the borders of Maroni and 
Oyapock rivers (Fig. 2b). Formal and informal human activi-
ties range from artisanal, industrial (e.g., fishing, hunting, 
mining, space sector, manufacturing, energy, agriculture, 
forestry) to commerce, construction, water management, 
tourism, and transport.

French Guiana hosts more than 280,000 inhabitants 
approximately 84,000  km2 but with the second-highest 
population growth rate among French regions. With 96% 
of its surface covered by the Amazon rainforest and 90% 
under State ownership (Iedom 2021), land tenure is a major 
issue, leading to challenges for future land management and 
conservation strategies.

Fig. 1  Simplified revised 
cascade model of ecosystem 
services according to the 
modifications proposed by Von 
Haaren et al. (2014) and Albert 
et al. (2016)
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Materials and Methods

Considered GES and Indicators Selection

Seven GES were selected in order to include the main ES 
classes (e.g., provisioning, regulating, cultural services) 
and according to the significant planning and environmen-
tal challenges in French Guiana. Table 1 shows four provi-
sioning services such as mineral commodity supply (MM), 
non-metallic raw material supply (MnM), surface water for 
drinking purposes (WS), groundwater for drinking purposes 
(WU), two regulating and maintenance services such as nat-
ural habitat regulation (HAB) and flood control (FC), and 
one cultural service, i.e., recreational activities (GC).

GES were assessed in their offered and used dimen-
sions and mapped firstly on a single-service basis and then 
combined to obtain multi-service maps (Fig. 3). GES were 
assessed and mapped through spatially explicit indicators 
selected according to existing studies (Fig. 4) and listed with 
the related input data in Table 2. Abiotic indicators were 
specifically chosen to underline the role of geodiversity in 
ES supply, sometimes in combination with human or social 
data. Input data were collected on GIS-based platforms such 

as GeoGuyane and Guyane SIG. More details are available 
in the Supplementary materials. Despite their non-renewa-
ble character, raw material supply services (MM and MnM) 
were addressed because they might be significant in land-
scape-oriented ES frameworks for planning perspectives 
(Kandziora et al. 2013), especially in such areas of interest. 
Their offered dimension was assessed respectively based on 
prospected mineral occurrences and lithological favorabil-
ity (Fig. 4a and b) while the used dimension was based on 
the location of legal mines and quarries (Grêt-Regamey and 
Weibel 2020 (Fig. 4h and i). Water supply services (WS 
and WU) were quantified based on the actual good status 
of surface waters (Fig. 4c) and aquifer location (Fig. 4d) for 
their offered dimension (Albert et al. 2016; Reverte et al. 
2020) and on drinking water points for the used dimension 
(Fig. 4j and k). Landscape capacity to support biodiversity 
habitats (HAB) was assessed through biodiversity potential 
levels described by Guitet et al. (2015)), which identify for-
est habitats mainly based on geomorphology (Guitet et al. 
2013), one of the main drivers of biodiversity changes in 
the Amazon basin (Guitet et al. 2015) (Fig. 4e). The surface 
of protected areas indicated the used dimension of the ser-
vice (Fig. 4l). Flood control (FC) was assessed based on the 

Fig. 2  Location of the study area and simplified geological map of French Guiana (a) and land use patterns (b)
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Fig. 3  Flowsheet of the methodology used in this study to perform a 
single-service and multi-services assessment of GES in French Gui-
ana. Geofunctionality and geodiversity were combined to compare 

their levels and spatial patterns and then merged with land-use data to 
obtain hotspot maps

Fig. 4  Initial spatial data used for both offered and used GES. More details are available in Table 2 and in Supplementary Materials
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presence of natural barriers such as wetlands (Kandziora 
et al. 2013) while flood-prone areas were identified by Guitet 
and Brunaux (2017) through the HAND topographic algo-
rithm (Rennó et al. 2008) (Fig. 4f). The assessment of the 
used service was based on the location of wetlands in areas 

covered by flood-risk prevention plans (Albert et al. 2016) 
(Fig. 4m).

Recreational activities offer (GC) was assessed accord-
ing to the number of currently inventoried geosites (Non-
tanovanh and Roig 2010; Roig and Moisan 2011; Bourbon 

Table 2  Indicators chosen for the assessment of each offered and used GES. The detailed list is available in Supplementary Materials

Code Indicator Unit before scoring Raw data Spatial accuracy

Offered service MM Mineral deposits Number per cell Mineral occurrencies and prospections 
map

n/a

Placer deposit prospection map n/a
MnM Favorable geological areas km2 per cell Geological Map of French Guiana 1; 500,000

Quarrying Cadastral Plan map n/a
WS Surface water quality km per cell 2020–2027 objectives for surface water 

resource management map
1; 5000

WU Underground water body surface km per cell Undeground water bodies in inner 
lithological formations

1; 500,000

Undeground water bodies affected by 
littoral dynamics

1; 500,000

HAB Biodiversity potential of natural 
habitats

km2 per cell Forest habitat catalog of French 
Guiana report

1; 200,000

FC Waterlogging-prone areas km2 per cell Predictive identification of wetlands 
map within forest management

1; 5000

GC Geoheritage potential Number per cell Inselberg map 1; 1,000,000
Georeferenced map of inventoried 

Points of Geological Interest
n/a

Used service MM Exploited mineral deposits km2 per cell Mining cadastral plan map (CAMINO) n/a
MnM Material production capacity t/year Extractive and quarrying activities 

map (excluding activities with per-
mits expired in 2022)

1; 50,000

WS Surface water points Number per cell Drinking water points (only surface 
water)

1; 25,000

WU Underground water points Number per cell Drinking water points (only under-
ground water)

1; 25,000

HAB Total protected areas km2 per cell Ramsar wetland map 1; 500,000
Guiana Amazonian Park (GAP) 1; 50,000
Integral and Managed Biological 

Reserves (RBI and RBD)
1; 50,000

National Forestry Office zoning (only 
including Areas of Ecological Inter-
est, Natural Reserves and Areas 
and Landscapes under Physical and 
General Protection)

1; 50,000

National Natural Reserves (RNN) 1; 500,000
Type 1 ZNIEFF map 1; 50,000
Type 2 ZNIEFF map 1; 50,000
Prefectorial order for protection of the 

biotope (APB)
1; 25,000

FC Flood-risk management km2 per cell Plan for Flood Risk Prevention map 1; 25,000
Predictive identification of wetlands 

map within forest management
1; 5000

GC Geoheritage accessibility m Inselberg map 1; 1,000,000
Georeferenced map of inventoried 

Points of Geological Interest
n/a

Road map of French Guiana n/a
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and Roig 2013) and the presence of outcrops of granitic 
inselbergs (Fig. 4g), considered one of the uncommon ways 
to observe French Guiana lithology (Ferry et al. 2003). The 
used dimension was characterized by integrating a distance 
parameter (Albert et al. 2016) between geosites and the road 
network (Fig. 2n).

GES Assessment and Mapping

After initial data were pre-processed (Fig. 4) (e.g., data 
merging, data extraction, geometry validation) using Qgis 
Desktop 3.28.5 and ArcMap 10.8.2 software, they were 
intersected, for each GES, with a 10 x 10 km grid-cell layer 
covering the whole continental part of the study area (922 
cells).

Data were summarized according to each cell depend-
ing on the units of the initial data (Table 2). For instance, 
data expressed in units of surface (e.g., used MM, offered 
and used MnM, offered WU, used HAB, offered and used 
FC), length (e.g., offered WS and used GC), or volume (e.g., 
MnM) were summed up for each cell while data expressed 
in terms of numbers of punctual geometries were simply 
counted (e.g., offered MM andGC, used WS and WU). 
Surfaces, lengths, and point counting were calculated auto-
matically using Qgis Desktop 3.28.5 functions. For the GC 
service, distances were calculated using the “Join attributes 
by nearest” tool and then averaged for each cell.

Each service map was joined by attributes to the original 
cell-grid layer. The values expressed for each service were 
re-classified into four classes using Jenks natural breaks, 
ranging from 1 (i.e., low supply) to 4 (i.e., very high supply).

The scores of offered and used single-service maps were 
summed to obtain multi-service maps representing, respec-
tively, total offered and used geofunctionality (Gf). Gf maps 
were re-classified into four classes using Jenks natural 
breaks, ranging from 1 (i.e., low supply; sum equal to 7) to 
4 (i.e., very high supply; sum superior to 18).

All the final maps were interpolated through kriging on 
ArcMap 10.8.2 in order to limit border effects, often caused 
by the homogenization of partial data contained in border-
ing cells.

Updating the Geodiversity Index (Gt)

The geodiversity index (Gt) for the study area was originally 
assessed by Scammacca et al. (2022a) as the sum of four 
partial thematic sub-indices (e.g., lithological and unlithi-
fied diversity, mineral diversity, hydrodiversity, and geomor-
phodiversity). The index was updated following two steps:

(i)A pedodiversity sub-index was integrated into the orig-
inal assessment through a coarse regional soil map of French 
Guiana (Blancaneaux 1979), recently available as a digital 
vector layer with a spatial scale of 1:1,000,000.

(ii)The hydrodiversity sub-index was recalculated using 
the same input data (e.g., surface and underground waters) 
and counting the number of different entities in each cell. 
Surface waters were categorized by their Strahler rank, as 
suggested by the 2019 Water Planning report (OEG, 2020).

GES and Geodiversity Relationships

The relationships between offered and used GES and 
between Gf and Gt levels were analyzed through differ-
ence mapping. Changes in spatial patterns and levels were 
obtained by adding a new field in the attribute table and 
calculating the relative difference (expressed in percentage) 
between offered and used GES according to the following 
equation (Eq. 1):

where  RDGf is the relative difference between offered  (Gfo) 
and used  (Gfu) geofunctionality. Changes between total 
offered and potential Gf and Gt indices were calculated 
according to the equation (Eq. 2):

where  RDGtf is the relative difference between the geodi-
versity index values Gt and offered  (Gfo) and used (Gfu) 
geofunctionality.

Spatial differences were classified on a range of seven 
classes translating the direction and the intensity of the 
change: for difference maps related to offered and used 
GES, areas with negative values infer that used GES levels 
are superior to offered GES levels while areas with positive 
values infer that offered GES levels are superior to used GES 
levels. When the value is equal to zero, offered and used 
GES show the same levels. The same considerations can be 
applied to the maps of the relative difference between total 
Gt and offered or used Gf (Eq. 3).

Geodiversity and Geofunctionality Hotspots

According to the approach proposed by Bétard and Peulvast 
(2019), a threat index (TI) was combined into Gt in order to 
obtain a sensitivity index (SI) and highlight geodiversity hot-
spots. In this study, TI was assessed based on the Hemeroby 
“M” index (Steinhardt et al. 1999), which is an integrative 
measure of human impacts on ecosystems (Lausch et al. 
2015) and has the advantage of being both ecologically well-
founded and easily applicable (Frank et al. 2012). This index 
is often used to evaluate the naturalness degree of an area 
(Walz 2008) and can be integrated within the assessment of 
ecological functioning (Frank et al. 2012).

(1)RD
Gf

= 100
Gf

o
− Gf

u

Gf
o

(2)RD
Gtf

= 100
Gt − Gf

o,u

Gt
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The index was calculated based on the Regional Land 
Use Plan (RLUP) of French Guiana (CTG 2016), at the 
scale of 1:100,000 as spatial input data. The RLUP defines 
the general allocation of areas to given land uses according 
to predefined planning objectives. It divides the territory 
into 11 land use categories (Fig. 5a) translating current and 
future activities. A Hemeroby degree (Fig. 5b) was assigned 
to each land use category as suggested by Walz and Stein 
(2014), (Table 3). Since the study area is cartographically 
divided into 922 cells of equal size, a simple area-weighted 
Hemeroby index was calculated using the following equation 
(Eq. 3) (Walz and Stein 2014):

where Mw is the simple area-weighted Hemeroby index, n 
is the number of degrees of Hemeroby (here, n = 7), fn is 
the proportion (%) of category n, and h is the degree of 
Hemeroby.

The calculation was performed by intersecting the 
Hemeroby degree map (Fig. 5b) with the original grid layer. 
After summarizing the intersected values to the grid cells, 
Eq. 4 was applied. The TI map was then interpolated through 
kriging showing low- and high-threat areas (Fig. 5d).

Finally, the SI was automatically obtained by the combi-
nation of the TI raster map with the Gt raster map (Fig. 3) 

(3)M
w
=

n
∑

h=1

f
n
× h

using the ArcMap Raster Calculator tool and according to 
the equation (Eq. 4):

The same equation was applied to offered and used Gf 
 (Gfo, u) raster maps as the following (Eq. 5):

The SI classes were normalized based on the overall 
minimum (i.e., 45.9) and maximum (i.e., 1424.3) values of 
the three maps.

Results

GES Levels and Maps

Figure 6 shows the single-service offered (Fig. 6a–g) and 
used (Fig. 6i–o) GES maps while overall averaged GES lev-
els are synthetized in Fig. 7. Globally speaking, the results 
highlight the following: (i) some services which are gener-
ally largely used—in terms of exploitation, management, 
or conservation strategies—compared to their offer (e.g., 
MM, HAB, GC); (ii) some services which are mainly under-
used—which does not imply a necessity of use—such as 
MnM, WS, WU, and FC; (iii) general sustainable uses with 

(4)SI
GI

= TI × Gt

(5)SI
GES

= TI × Gf
o,u

Fig. 5  Assessment of the threat index using the Hemeroby index formula proposed by Walz and Stein (2014)
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potential overuses of the resources (e.g., MM, HAB, GC) 
but which must be analyzed very carefully according to the 
methodological choices and the selected indicators.

Raw material supply for mining (MM) shows high offered 
levels along the two greenstone belts (Fig. 6a), although 
used levels are only higher in the northern belt because of 
formal interdictions in the southern one, where the Amazo-
nian Park is located (Fig. 6i) and where illegal gold mining 
is very active (Jébrak et al. 2021). MnM-offered levels are 
higher in all the Quaternary sedimentary formations of the 
coastal plain (Fig. 6b)—where used MnM levels are mainly 
located (Fig. 6j)—and in the TTG units (Fig. 2a), particu-
larly in the western area of the territory. Water supply (e.g., 

WS and WU) and natural habitat regulation (i.e., HAB) 
are offered almost in the whole study area (Fig. 6c–e). WS 
and WU are only locally used along the coastal and river-
ine regions (Fig. 6k and l) while HAB shows moderate to 
high levels in almost the totality of the territory (Fig. 6m). 
Despite FC showing moderate levels throughout French Gui-
ana (Fig. 6f), used levels are mainly located in coastal areas 
(Fig. 6n). GC is supplied in specific spots spread across the 
whole region (Fig. 6g), mainly in the coastal, eastern, and 
southern regions. The southern areas are less accessible and, 
therefore, show lower used levels (Fig. 6o).

Unlike all offered GES, which show overall higher levels 
with the exception of MM and GC  (Gfo = 1.3), used GES 
display globally low levels (Fig. 7). Only the HAB difference 
map highlights multiple areas where offered levels are infe-
rior to the used ones (Fig. 6u). Nevertheless, when averaged 
over the whole study area, levels are higher for the offered 
HAB service  (Gfo = 3) than for the used one  (Gfo = 2.6) 
(respectively, Fig. 6h, p, and x).

Comparing Geodiversity (Gt) and Geofunctionality 
(Gf) Levels

Figure 8 compares the Gt (Fig. 8a) with the offered and 
used Gf (Fig. 8b and c). Except for the northern and south-
ern belts where Gt levels are at their peaks, Gf levels are 
higher than Gt levels (Figure 8d). Areas in the western 
part of French Guiana, characterized by TTG complexes 

Fig. 6  Assessment and mapping of the selected GES in their offered (a–h) and used (i–p) dimensions. h and p are, respectively, the offered and 
used multi-service map. The offered and used dimensions of the assessed GES were then compared (q–x)

Fig. 7  Averaged offered (black) and used (purple) GES levels over 
the study area
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(Fig. 6b), show higher offered Gf levels with relative dif-
ferences compared to Gt that is locally higher than 100% 
(Fig.  8d). When averaged over the whole study area, 
offered Gf levels are approximatively 55% higher than Gt 
levels.

On the contrary, considering the overall low used sin-
gle-services levels (Fig. 7), Figure 8e highlights many 
areas where used Gf levels are estimated as lower than 
Gt levels. Nevertheless, when averaged over the whole 
study area, Gt levels are only 7% superior to used Gf levels 
(median equal to 0).

Geodiversity and Geofunctionality Hotspots

Most of the highest threat levels are located particularly 
along the coastal areas, where most of the human settle-
ments and activities are located (Fig. 9a), with the highest 
peak of threats located particularly between the main cit-
ies of Cayenne and Kourou (Fig. 5b). Moderate levels are 
also shown along the riverine areas of Maripasoula when 
going upstream the Maroni River. When the TI map is com-
bined with Gt (Fig. 9b) and offered (Fig. 9c) and used Gf 
(Fig. 9d), the highest levels of sensitivity (i.e., hotspots) are 

Fig. 8  Comparing geodiversity 
(a) and geofunctionality (b, 
c) indexes to obtain difference 
maps about their levels and 
spatial patterns
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highlighted particularly for Gt, mainly along the coastal 
areas. Gf hotspots are less contrasted but still present par-
ticularly in the highest-threat areas on the coastal areas and 
along the Maroni River (Fig. 9c). Used Gf hotspots seem to 
follow similar patterns but, since used Gf levels are lower, 
the contrast is less enhanced (Fig. 9d).

Discussion

The Added‑Value of Geofunctionality Assessment 
and Hotspot Analysis: from Land Planning 
to Landscape Planning

The assessment of geodiversity results often in the meas-
urement of the heterogeneity of landscape abiotic features, 
and it is generally influenced by their spatial geometry and 
distribution within a given area. Switching to a functional 

dimension is uncontestably critical to concretely enhance 
planning strategies because it allows to understand the com-
plex relationships between geodiversity-related entities and 
socio-ecological functioning, needs, and uses. As shown 
in Fig. 8d and e, geodiversity and geofunctionality do not 
always follow the same spatial patterns, and thus, they must 
be both accounted for when it comes to planning tasks.

Geofunctionality relates geodiversity to human activities, 
which can range from conservation to exploitation or artifi-
cialization. Indeed, “land” planning might be defined as the 
systematic and voluntary assessment of alternatives for land 
use and a territorial repartition of resources reflecting socio-
economic conditions, policy visions (e.g., economic devel-
opment, landscape protection, equal access to education and 
culture), and knowledge in order to adopt the best land use 
options (Metternicht 2017; Desjardins 2021). Since land 
uses and human inputs imply a socio-economic and func-
tional dimension of space and time, they dissolve within a 

Fig. 9  Combination of the 
threat index (a) with geodi-
versity and geofunctionality 
indexes to obtain geodiversity 
hotspots (b) and geofunctional-
ity hotspots (c, d)
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“territorial metabolism” (Desjardins 2021) that goes beyond 
preservation and conservation purposes alone, including also 
processes that might alter, exploit, artificialize, transform, or 
even destroy natural resources.

Therefore, “landscape”—rather than “land use”—plan-
ning implies a holistic and metabolic vision of ecosystem 
diversity, in both its biotic and abiotic dimensions, and it 
allows the understanding of the relationships between bio-
diversity, geodiversity, and socio-ecological functioning and 
needs.

Geodiversity and biodiversity should therefore be high-
lighted as equal and linked concepts (Ren et  al. 2021). 
Because geodiversity finds its synthesis in the landscape 
(Alexandrowicz and Kozlowski 1999; Serrano and Ruiz-
Flaño 2007), its operationalization should encompass the 
landscape seen as a multifunctional complex unit (Nin et al. 
2016; Englund et al. 2017; Metternicht 2017; Miklós et al. 
2020). Despite it raising many debates (Schröter et al. 2014), 
the ES concept appears to be an interesting approach to ana-
lyze and assess geofunctionality. This landscape-oriented 
analysis undoubtedly involves spatialized approaches to 
identify the distribution, across space, of landscape func-
tional units. When it comes to such assessments, it is pref-
erable to distinguish between GES or SI levels when aver-
aged over the whole study area and their spatial distribution. 
Although considering the study area as a whole entity with 
averaged levels might be helpful to support strategies at the 
national or supranational scales, it would not allow to iden-
tify clusters or priority areas of intervention at the landscape 
functional unit scale.

For instance, despite averaged low levels, MM supply 
shows high offered levels mainly along the two greenstone 
belts, which host most of the gold deposits (Fig. 4a). Offered 
WS and WU are spread along the whole region (Fig. 4c and 
d) confirming the fact that, as its name suggests, Guyana 
is the “land of many waters” (Clifford 2011). The Quater-
nary formations of the coastal areas underlying the Paleo-
proterozoic basement offer for instance overlapping aqui-
fers, increasing known offered WU levels in such regions 
(Fig. 7d). These portions of the territory show also the most 
important potential in hosting natural flood-prone areas and 
wetlands (Fig. 4f), mainly because of their intertidal posi-
tions, the potential influence of sedimentary aquifers, and the 
presence of mangrove ecosystems developed on the coastal 
sediments.

When geofunctionality is combined with human-related 
threats according to the approach proposed by Bétard and 
Peulvast (2019), geofunctionality hotspot maps provide 
information about the spatial patterns of endangered areas, 
thus supporting the spatial allocation of lands and priorities 
of intervention, while integrating the socio-environmental 
impacts and conflicts with other potential land uses (Nin 
et al. 2016). Important information could be also provided 

through statistical analysis or generalized additive models 
to analyze the relationships between land use intensity, geo-
diversity, and geofunctionality as performed by Tukiainen 
et al. (2017). Focusing only on geodiversity hotspots would 
neglect potential areas of ordinary abiotic nature or lower 
geodiversity that are not necessarily less important in terms 
of ES supply (Bétard and Peulvast 2019).

The Dual Role of Human Inputs in Supplying 
Services: Towards ES Management Indicators?

Land use, as a human footprint on the environment, is often 
used to proxy threats to ecological integrity. Nevertheless, 
the conceptualization of land use only as a “threat” would 
be limiting in terms of landscape analysis since it is one of 
the main drivers of landscape structures and patterns (Pătru-
Stupariu et al. 2017), driven by governance objectives and 
societal needs (Galler et al. 2016). As mentioned and con-
ceptualized by the revised cascade model, human inputs are 
considered a part of the ES production chain.

A service relates to a demand, and it is indeed often com-
bined with built, human, or social capital in terms of inven-
tory and/or management activities (Jones et al. 2016). This 
can be particularly observed in two complementary dimen-
sions of GES supply. For instance, the supply of raw materi-
als for mining (MM) and quarrying (MnM) implies, on one 
hand, the construction of exploitation infrastructures and a 
human workforce that are able to provide the final service. 
On the other hand, the location of the supply related to such 
activities is often regulated by mandatory frameworks, such 
as the Quarrying Regional Plan (QRP) or the Departmental 
Mining Plan (DMP) in French Guiana, which state where 
extraction can or cannot take place according to different 
criteria (e.g., sensitive areas, minimum distance to populated 
areas). Also, MnM levels are often concentrated especially 
along the coastal strips (Fig. 4j), since the sandy, lateritic, 
and hard-rock materials are more accessible and closer to 
human settlements where ongoing construction projects are 
located (Fig. 4j). Surface and groundwater supplies are often 
located next to populated areas (Fig. 4k and l) since the used 
service would be non-existent otherwise. Access to geoherit-
age areas is provided by a network of roads except for the 
southern areas of French Guiana, where environmental pro-
tection measures limit some human interventions (Fig. 4o). 
Globally, the highest levels of used geofunctionality seem 
to follow human population distribution, suggesting that the 
concept of “used” service, depending on the type of service, 
might be tightly related to human activities requiring inter-
ventions other than conservation.

Thus, human inputs might act as ES co-producers and as 
ES managers. In the first case, they will particularly influ-
ence the future levels of offered service supply, while in the 
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second case, they might control ES spatial patterns, in both 
cases, to satisfy a demand.

In French Guiana, ES management seems to lead to a 
clear distinction between two areas. The first one is com-
posed of the littoral—and, in some cases, riverine—areas, 
the most inhabited ones where most of needs and ES 
demands are located but also where geodiversity and bio-
diversity levels seem higher, hosting dynamic and fragile 
landscapes (e.g., mangroves, wetlands). The second area 
embraces most of the inner regions of the territory where 
human density is very low and where habitat protection 
strategies dominate, sometimes in contrast with dispersed 
legal or illegal activities such as gold mining.

Protected areas show in some cases even higher “used” 
levels than “offered” ones (Fig. 4m and u). The overall 
higher values for this service and the spatial mismatches 
between its offered and used levels might imply that land 
planners give priority to biodiversity conservation objec-
tives in inner French Guiana compared to other land uses. 
In such protected areas, which are also considered by the 
DMP, land uses such as mining are therefore forbidden 
because of conflict with the objectives of local and national 
strategies. This might explain, for instance, the difference 
between offered and used MM levels in the gold deposits of 
the southern greenstone belt (Fig. 6q). It must not be forgot-
ten, indeed, that the supply of multiple ES depends on their 
management, and it can result in synergies and trade-offs 
between single services. For instance, management strate-
gies targeting MM or MnM supply could lead to decreasing 
surface or groundwater supply, because of the widely known 
impacts of extraction activities on water quality (Castello 
and Macedo 2016) and quantity (Northey et al. 2016). How-
ever, such considerations should highlight the existence of 
informal and illegal activities, such as illegal gold mining, 
which participate in the production of “used” services—for 
instance, in the southern greenstone belt—but increasing 
negative impacts and trade-offs with other services (e.g., 
water quality, natural habitat support). The inclusion of 
informal human inputs and the related fuzzy data should be 
considered in such approaches.

For better implementations within landscape planning, 
indicator selection should then fit the cascade model, and 
it might be necessary to clearly distinguish between offered 
service indicators, used service indicators, and management 
indicators. As for example, Rendon et al. (2022) propose 
a list of non-regulatory management indicators to analyze 
pressures on soil-related ES, mainly in terms of agricultural 
practices, although management indicators should cover all 
the dimensions of human inputs. Table 4 attempts to sat-
isfy such distinction for further improvements of the cur-
rent study proposing a list of management indicators and 
their objectives for the services considered in this study. 
Management indicators could vary in terms of management 

“intensity,” which can range from preliminary screening, 
inventory, and baseline data acquisition to advanced tasks 
of land allocation, zoning, and planning. Such indicators, 
sometimes unlike the ES they are related to, tend to be com-
plementary rather than discordant. For instance, manage-
ment tools related to mining and water planning are often 
compatible and harmonized. In French Guiana, the DMP 
and the SDAGE (Table 4) are explicitly supportive and inter-
related between each other. Management indicators, ideally, 
should be the result of adequate strategies where planners 
accounted for ES synergies and trade-offs to find the opti-
mal balance between economic development and ecological 
integrity.

Thus, a true implementation of the ES framework would 
require in practice “formal changes of existing planning 
instruments” (Albert et al. 2016), and it would be therefore 
pivotal to address in the future all the dimensions of human 
inputs in ES production chain to support prospective stud-
ies for ES assessment, monitoring, and landscape planning.

Unavailable Data Are a Matter of Landscape 
Planning

Human inputs include the inventory of data that can be 
provided by all the stakeholders in a territory (Jones et al. 
2016), through various methods and tools, to supply the 
baseline of knowledge used to quantify the capacity of an 
ecosystem to provide a service. Therefore, the quality of 
such data and their scales of acquisition drive ES assessment 
and mapping tasks and have a critical impact on the final 
results. Most of the services do not display the same spatial 
coverage and are limited only to a few portions of the study 
area. If this is related, on one hand, to the bio-geo-physical 
heterogeneity of the landscape—meaning clearly that not all 
the ES are or can be supplied by the same spatial units and 
might have different patterns—on the other hand, it gives 
clues about data availability, accessibility, and data acquisi-
tion methods (Le Tourneau and Noucher 2023).

For instance, the assessment of quarrying and mining 
materials supply does not account for data on ancient quar-
ries which sometimes were located in the newly populated 
areas nor on illegal gold mining production rates and risks. 
Raw material offered supply is here based on geological sur-
veys and prospections carried out by the French National 
Geological Survey over the last decades (Magnien et al. 
1990; Billa et al. 2013) that specifically targeted the gold-
hosting regions of the greenstone belts (Fig. 6a). Potential 
wetlands were identified at the scale of the whole region 
(Guitet and Brunaux 2017). Biodiversity-related data (e.g., 
Fig. 4e) are mapped at the regional scale also because most 
of the surveys over the years focused on biotic resource 
inventory (Gautreau 2020). Spatial patterns of geoheritage 
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points can be explained by their identification through both 
remote-sensed regional data and local field surveys.

The areas with the highest ES levels are located on the 
coastal and riverine areas of French Guiana because they 
are the most explored, accessible, and inhabited, and data 
are needed for most of the past and current practical plan-
ning challenges. These areas are also the most threatened 
(Fig. 9a) since human occupation is mainly located here and, 
based on our assessment, that automatically leads to “very 
high” sensitivity levels (Fig. 9b–d).

This means also that applying land use–based metrics for 
threat identification—such as the Hemeroby index—could 
translate spatial bias and overlaps in the identification of 
geofunctionality hotspots since (i) land use is one of the 
drivers of used ES supply and (ii) land use can proxy the 
accessibility and availability of data, which might be higher 
in anthropic areas.

The relationship between the spatial distribution of data 
availability and inhabited areas might lead to underestimat-
ing the levels of offered services in more remote areas. Such 
underestimations should be considered a loss of opportunity 
to develop potential services which are still not known, and 
consequently unused, or, on the contrary, as the best way to 
preserve them (i.e., since they are not known, they might be 
also not degraded by human interventions).

Unavailability of geoscientific data must be identified and 
assessed, and such gaps represent an undeniable challenge 
to address for landscape planning. Through indirect or direct 
measures, the landscape and its structures should be better 
acknowledged to identify and apply adequate indicators for 
ES assessment and management. In the lack of adequate 
indicators, the assessment process risks to be performed 
with coarse available data since it is the only option, rather 
than the best one. This is particularly true for regulating 
services, which provide direct impacts that can be difficult 
to express through pertinent indicators (Villamagna et al. 
2013), unlike provisioning services which are usually more 
easily available. Therefore, the multi-service combination of 
ES of different natures could lead to bias, since it combines 
services assessed based on data that have different levels of 
availability.

A Regional Commission for Geoheritage of French Gui-
ana has been only recently established and geoinventories 
are still ongoing. Geodiversity features of French Guiana, 
such as the unique komatiitic-related Dachine diamonds 
(Smith et al. 2016), a great variety of inselbergs spread 
across the region (Aertgeerts 2020), such as the Mamilih-
pann inselberg and its still unknown cave paintings (Fuentes 
2022), or else the remarkable Grand Connétable island, 
could be integrated into the assessment of cultural GES. 
Wetland identification field surveys are still unaccomplished 
because of the lack of harmonized soil and vegetation data 
(Blum 2013). Also, water-related services could be proxied Ta
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by the permeability of lithological formations (Perotti et al. 
2019), for instance through hydraulic conductivity or rock 
porosity (Freeze and Cherry 1979).

The identification of management goals and land plan-
ning exercises require an important level of detail, especially 
at regional and local scales (Gómez-Zotano et al. 2018). As 
highlighted by Heink et al. (2016), indicator choice “should 
capture the meaning of the construct that is to be measured” 
and “the variance between the indicator and the indicandum 
should be low,” meaning that the conceptual model used 
should be as clear as possible and that indicator selection 
should stick to it.

Abiotic Services or Abiotic Indicators?

In a theoretical way, the ES concept already includes abiotic 
and interfacial components in its definition. However, the 
current position of geodiversity within the ES framework 
still remains confused (Fox et al. 2020). This declination 
resulted sometimes in varying classification systems and ter-
minologies (e.g., “subsurface services”: Van Ree and van 
Beukering 2016; “abiotic ES”: Fox et al. 2020; “geosystem 
services”: Gray 2011). For instance, some authors suggest 
that geosystem services are all the services associated with 
geodiversity and that are “independent of interactions with 
biotic nature” (Fox et al. 2020). Nevertheless, if we con-
sider the landscape as a unified, holistic, and dynamic whole, 
most of the services are per se the result of both biotic and 
abiotic components of natural diversity. One might argue 
that in any case, attention should be given to identifying a 
given biotic or abiotic factor that plays a dominant role in the 
supply of a specific service. Nevertheless, this dominance 
should be rather expressed in how that specific service is 
assessed, and thus, in the choice of an adequate predictive—
and dominant—variable to assess it. For instance, although 
the “offered” services selected in this study are classified as 
biotic (e.g., HAB, FC) and abiotic (MM, MnM, WS, WU, 
GC) (Table 1), their assessment was performed only accord-
ing to abiotic variables. Thus, it is pivotal to distinguish 
between the services themselves (biotic and abiotic) and the 
underpinning variable(s) that can be selected as assessment 
indicators. In other words, a unified definition of geodiver-
sity-based ES might be needed.

Conclusion

To fully support land use planning and conservation objec-
tives, it is fundamental to account for the contribution of 
geodiversity to socio-ecological functioning (i.e., geo-
functionality). This study proposes an approach to assess 
geofunctionality in terms of geodiversity-based ecosystem 
services (GES), through a conceptual model—based on 

the revised ES cascade model which distinguishes between 
offered and used services—and a methodological framework 
that aims at identifying and comparing geodiversity and geo-
functionality hotspots.

The application of these frameworks in French Guiana, an 
overseas French territory presenting planning and conserva-
tion challenges, highlights the feasibility of such approaches 
and the heterogeneity of spatial patterns between geodiver-
sity and geofunctionality which thus must be both included 
within landscape planning.

When assessing typological and functional variability, 
it is pivotal to distinguish between levels and spatial pat-
terns. The choice between the types of results to consider 
strictly depends on the objectives of the assessment. Spatial-
ized approaches seem more adequate for planning, seen as 
the process of allocating lands and integrating impacts and 
conflicts with other potential land uses. Nevertheless, when 
assessing geofunctionality hotspots—since used services 
rely here on human inputs—threats and used geofunction-
ality levels might overlap and lead to spatial bias. According 
to this study, French Guiana can be divided into two main 
areas: the littoral areas, more populated, with higher levels 
of geodiversity, and used geofunctionnality but also higher 
threats, and the less inhabited and less known inner regions, 
the widest area with important assessed levels of offered 
geofunctionality.

Despite the revised ES cascade model including human 
interventions in the supply of ES, further improvements 
should not only focus on a clear-cut distinction of human 
inputs as ES co-producers and managers but also demanders.

Indicator selection is a crucial step in the assessment pro-
cess, and it should satisfy multiple criteria and fit precisely 
the conceptual model used. However, data unavailability is 
the main issue in the achievement of such requirements, and 
it must therefore be considered a matter of land planning that 
should be quantified. This is particularly true in French Gui-
ana, where geoscientific data production must be enhanced.

Landscape planning—rather than “land use planning”—
implies a holistic and metabolic vision of ecosystem diver-
sity, in both its biotic and abiotic dimensions, and it allows 
the understanding of the relationships between biodiversity, 
geodiversity, and socio-ecological functioning and needs. 
The ES concept, despite its anthropocentric nature, can be 
a useful tool to identify and analyze human-nature relation-
ships. However, many improvements must be achieved to 
clarify the ES concept itself, the place of abiotic and inter-
facial components of natural diversity within it, and how this 
concept can fully relate to human activities, uses, needs, and 
priorities of action to drive and support the implementation 
of policies in increasingly disturbed environments.
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